
Vr Flight
From Ultra Real

Support

Web Site http://nisbetcraig.wixsite.com/ultrarealassets
E-mail nisbet.craig@yahoo.com

Quick Start Guide

1. Start a new empty project and a new empty scene.

2. Download and import the VrFlight asset package from the Unity Asset Store.

3. Find and load the scene “Empty Island” from the VrFlight/Demo/Scenes directory.

This will give you an empty landscape to experiment with.

4.

5. Find the VrFlight prefab in the VrFlight/VrFlight System/Prefabs directory and move it

into the scene. Be sure to move it somewhere up above the ground.

http://nisbetcraig.wixsite.com/ultrarealassets
mailto:nisbet.craig@yahoo.com

6. Make sure “Virtual Reality Supported” is checked in Player Settings under the Other

Settings tab.

7. Press play...oh yeah and put on your VR headset.

In the future, if you would like to only import the VrFlight prefab and scripts and not all the demo

content, simply import only the VrFlight System folder from the asset package.

Flight System Controls

Look Flight: Look in any direction that you would like to

fly.

Turning: Tilt your head left and right to turn or perform

sharp u-turns.

Controller Input : (Optional) Right trigger will accelerate

your flight and the left trigger will decelerate your flight.

VrFlight Prefab Breakdown

Basic Features

1. Natural flight motion that uses head looking and tilting.

2. Input converter scripts that turns your VR Headset into a game controller with Axis

inputs.

3. Animated motion sickness blinders that respond to head motion and the proximity of

game world surroundings.

4. Animated camera wind effects that react to players actions.

5. Simulated gravity acceleration effects. You’ll move faster as you dive to the ground.

6. Simulated death on collision.

7. Can use additional input from a game controller for flight acceleration

Code Features
1. Scripts contain both Unity Events and C# Events for important flight events.

2. Code architecture is built on the use of C# Interfaces rather than direct script access,

allowing for greater customization.

3. All code is commented.

Scripts
There are several scripts on the VrFlight prefab that work together to create the VrFlight

experience. Here we will try to give a brief description of each script and their general usage.

VrFlight

The Vr Flight script controls the forward and turning

motion during flight. Here you can control many of the

flight parameters to your liking.

You’ll have access to a speed modifier variable from

script that allows you to create acceleration effects like

boost power ups.

You can also simulate how the players head pitch

controls the speed. For instance, it can slow down if

the player is looking up as well as speed up if they are

looking down. This can help simulate the effect of

racing to the ground with gravity.

Inspector Properties

Flight Active: This enables and disables the flight system. This is extremely useful if you want

to use the flight camera as a standard VR camera when you are not in flight mode. There are

examples of this in the demos.

Base Speed: This is the base velocity that the flight system moves by default. Think of it like

an airplane’s forward momentum that is needed to maintain flight.

Turn Speed: Angular speed that the flight system will turn when the player tilts their head.

Gravity Factor: This value affects the speed change as the player pitches their head up and

down. By default this is set to a positive value to simulate gravity pulling the player down faster

as they look down, but this can just as easily be a negative number to simulate the opposite

effect such as a diver swimming and moving faster as they look upwards.

Invert Turning: In testing it was discovered that the Gear Vr banking input was inverted for

some reason. This issue may have been corrected already or will soon be corrected. Either

way, this toggle provides a way to combat this issue if it arrives.
Max Tilt Angle: This is the maximum angle in degrees that the player can tilt their head in either

direction to control the turning effect. 60 degrees felt about right in our testing.
Acceleration Transition Speed: The speed of a player’s flight can be modified via script at

run-time using the SpeedMod property. Acceleration Transition Speed controls the duration of

the transition to the new speed, and helps the flight motion not look jerky.

OnFlightActiveOn and OnFlightActiveOff: Unity Events that fire off when your game

activates and deactivates the flight system via the FlightActive Property.

Properties Available From Scripting
FlightActive: This enables and disables the flight system. This is extremely useful if you want

to use the flight camera as a standard VR camera when you are not in flight mode. There are

examples of this in the demos.

SpeedMod: This is a speed value that is added on top of the base speed. Use this to create

acceleration effects like boost pickups. Here’s an example of a coroutine that modifies the

SpeedMod Property to boost the player for a duration.

FlightActiveChanged: C# event that fires off when the FlightActive property has been

changed.

Methods Available From Script
Reset(): Resets the flight systems speed values back to where they were set when the script

awoke.

Float GetVelocity(): Returns the velocity of the flight system.

Camera GetCamera(): Returns the Camera attached to the flight system.

Vector3 GetForward(): Returns the world forward vector of the flight system.

Transform GetTransform(): Returns the cached transform from the flight system. Faster than

using “tranform” directly.

ICameraFader GetCamaraFader(): Returns the CameraFader interface.

Velocity Sound
The Velocity sound script simulates the

effect of sound changing pitch and volume

as the player moves at different speeds.

This script is completely generic and will

work on any GameObject that has a Rigid

Body on it.

Provide the script with a minimum and maximum velocity speed and the script will scale the

pitch and volume accordingly.

Inspector Properties

Audio Source: Reference to an audio source that will have it's pitch controlled.

Min Velocity: Minimum velocity for pitch and volume change.

Max Velocity: Maximum velocity for pitch ann volume change.

Min Pitch: Pitch value when the velocity is at the Min Velocity.

Max Pitch: Pitch value when the velocity is at the Max Velocity.

Min Volume: Volume value when the velocity is at the Min Velocity.

Max Volume: Volume value when the velocity is at the Max Velocity.

Special Note: While in play mode, this script will show the player’s current velocity, and max

velocity reached as they play. Use this to help find your setting for Min and Max Velocity.

Vr Camera Fader
The Vr Camera Fader script acts as a

translator between the VrCameraFade script

that is located deeper in the prefab. The

VrCameraFade is from the Unity Vr Samples

Methods available from script

Void FadeIn(): Fades in from black using the default duration in the VrCameraFade script on

the camera.

Void FadeOut(): Fades out to black using the default duration in the VrCameraFade script on

the camera.

Void FadeIn(float duration): Fades in from black over the duration entered.

Void FadeOut(float duration): Fades out to black over the duration entered.

IEnumerator BeginFadeIn(float duration): Fades in from black over the duration entered as a

coroutine. Exits coroutine when the fade is complete.

IEnumerator BeginFadeOut(float duration): Fades out to black over the duration entered as a

coroutine. Exits coroutine when the fade is complete.

Vr Flight Basic Input
The Vr Flight Basic Input is a simple Unity

Input script. The VrFlight script uses this for

it’s player acceleration input. Usage of this

script is completely optional.

If you’re a coder, you can easily write your

own version of this to support other control input systems like Rewired or CInput. Most of the

scripts within this system rely on C# interfaces allowing for easy customization without the need

to break the original code to accomplish what you want.

Inspector Properties

AccelerateSpeed: Speed that will be added to VrFlight’s BaseSpeed value when the

Accelerate Input is pressed

DecelerateSpeed: Speed that will be added to VrFlight’s BaseSpeed value when the

Decelerate Input is pressed. Can be a negative value.

AccelerateInputName: Accelerate Unity input name.

DeceleateInputName: Decelerate Unity input name.

Methods available from script

Float GetAccelerationSpeed(): Returns the acceleration speed.

Vr HMD Input
This is purely a technical script. Vr is new

and things change A LOT. This is a

translator script that gets the Input from the

Head Mounted display and converts the inputs into something the flight system can use. It also

creates axis inputs that can be used in a very similar fashion to the Unity input system’s axis

inputs.

This script is currently using the input information gathered from Unity’s

UnityEngine.VR.InputTracking system, but who knows, you may need to use a Vr Input device

this isn’t supported by Unity by default. If that is the case, different versions of this script can be

written to support your desired input device.

Methods available from script

Vector3 GetHmdGlobalForward(): Returns the forward direction of the camera relative to the

VrFlight rig.

float GetHmdHeadingAxis(): Returns the Heading in a axis value (-1 to 1).

float GetHmdPitchAxis(): Returns the Pitch in a axis value (-1 to 1).

float GetHmdBankAxis(): Returns the Bank in a axis value (-1 to 1).

float GetHmdHeadingEuler(): Returns the heading angle in degrees from the Head Mounted

Display and converts it relative to forward head facing.

float GetHmdPitchEuler(): Returns the Pitch angle in degrees from the Head Mounted Display

and converts it relative to forward head facing.

float GetHmdBankEuler(): Returns the bank angle in degrees from the Head Mounted Display

and converts it relative to forward head facing.

Vector3 GetHmdLocalPosition(): Pass through for the raw data from the tracking system.

Quaternion GetHmdLocalRotation(): Pass through for the raw data from the tracking system.

Crash
The Crash script sends an event to a

desired target reporting that the player has

crashed.

Note: Script contains a C# event as well.

Unity Events
OnCrashed : Fires off this event if the flight system hits another collider

C# Events: (from script)
Crashed : Fires off this event if the flight system hits another collider

Death
This script can play a sound and cause the

camera to fade to black when the player

dies.

It can also be used to send events to other

scripts letting them know that the player

died.

Audio Source : Reference to the AudioSource for the death sound. use of this is completely

optional.

FadeOutOnDeath : (Toggle)Tells the camera to fade out on death. Requires a ICameraFader

reference.

VrCameraFaderScript : Reference to a script that implements the ICameraFader interface.

This will most likely be the CamaraFader script. You can write a script that implement

ICameraFader if you want to use your own custom camera transition system.

FadeOutDuration: Duration of the Camera fade out.

Unity Events
OnDied : Unity event that is called when the Die method is called.

C# Events
Died(from script) : Event that is called when the Die method is called.

Methods available from Script

Void Die() : Activates the death effects in this script and fires off Died events.

Auto Respawn
The Auto respawn script is provided as a demo of the Respawn function in the VrFlight script.

With it on the VrFlight prefab, it will automatically respawn the player back to it’s start position

after 2 seconds.

Typically in a game, respawns would not be done in the player Game Object itself, but in a

Game Manager somewhere else in the scene. If you would like to try this, remove the Auto

Respawn script from the VrFlight prefab in your scene, and Create an empty Game Object at

the scene level. Then add the SampleGameManager script to that Game Object. You can

modify this script to make your own game manager.

Vr Tracking Negate

Currently there is no way to turn the Unity

Vr position tracking off. Vr Flight does not

rely on this feature so we need to turn it

off. This script employs a transform trick to accomplish this.

Wind Particles
Wind particles animates the appearance

of a particle system to simulate wind

blowing past the camera.

This script doesn’t require the flight

system to work. It relies on the velocity

from a Rigid body, so it can just as easily

be used on any camera that just has a RigidBody on it.

It’s important to note that this script does not do all the work of representing the wind effect on

it’s own. You will still need to make a particle system that is similar to the one on the VrFlight

Prefab. It’s simply a ring of particles that whiz past the camera. For most purposes we suggest

just modifying the one provided in the VrFlight prefab.

Currently this script only works with forward velocity. This may be modified in future versions.

Inspector Properties

Rigid Body: Reference to a RigidBody, it uses this for velocity information.

Particle System: Reference to the particle system this script will affect.

Particle Velocity Scale: Use this to scale the velocity before it gets applied to the particle

velocity. It testing, 1 to 1 scale velocity didn’t always look right when applied to the particles. A

value of 0.5 seemed look good.

Fade Out Speed: Velocity at which the particles would not be visible. This should be a slow

speed.

Fade In Speed: This is the velocity when the particles are fully visible. This should be a high

speed.

